92 research outputs found

    Copula-based dynamic conditional correlation multiplicative error processes : [Version 18 April 2013]

    Get PDF
    We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables’ conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows capturing (multivariate) dynamics in higher order moments. The latter are modeled using a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks

    Exact and Asymptotic Tests on a Factor Model in Low and Large Dimensions with Applications

    Full text link
    In the paper, we suggest three tests on the validity of a factor model which can be applied for both small dimensional and large dimensional data. Both the exact and asymptotic distributions of the resulting test statistics are derived under classical and high-dimensional asymptotic regimes. It is shown that the critical values of the proposed tests can be calibrated empirically by generating a sample from the inverse Wishart distribution with identity parameter matrix. The powers of the suggested tests are investigated by means of simulations. The results of the simulation study are consistent with the theoretical findings and provide general recommendations about the application of each of the three tests. Finally, the theoretical results are applied to two real data sets, which consist of returns on stocks from the DAX index and on stocks from the S&P 500 index. Our empirical results do not support the hypothesis that all linear dependencies between the returns can be entirely captured by the factors considered in the paper

    On the Exact Solution of the Multi-Period Portfolio Choice Problem for an Exponential Utility under Return Predictability

    Full text link
    In this paper we derive the exact solution of the multi-period portfolio choice problem for an exponential utility function under return predictability. It is assumed that the asset returns depend on predictable variables and that the joint random process of the asset returns and the predictable variables follow a vector autoregressive process. We prove that the optimal portfolio weights depend on the covariance matrices of the next two periods and the conditional mean vector of the next period. The case without predictable variables and the case of independent asset returns are partial cases of our solution. Furthermore, we provide an empirical study where the cumulative empirical distribution function of the investor's wealth is calculated using the exact solution. It is compared with the investment strategy obtained under the additional assumption that the asset returns are independently distributed.Comment: 16 pages, 2 figure

    Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions

    Full text link
    In this paper we consider the asymptotic distributions of functionals of the sample covariance matrix and the sample mean vector obtained under the assumption that the matrix of observations has a matrix-variate location mixture of normal distributions. The central limit theorem is derived for the product of the sample covariance matrix and the sample mean vector. Moreover, we consider the product of the inverse sample covariance matrix and the mean vector for which the central limit theorem is established as well. All results are obtained under the large-dimensional asymptotic regime where the dimension pp and the sample size nn approach to infinity such that p/nc[0,+)p/n\to c\in[0 , +\infty) when the sample covariance matrix does not need to be invertible and p/nc[0,1)p/n\to c\in [0, 1) otherwise.Comment: 30 pages, 8 figures, 1st revisio

    Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix

    Full text link
    In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables pp\rightarrow\infty and the sample size nn\rightarrow\infty so that p/nc(0,+)p/n\rightarrow c\in (0, +\infty). The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. At the end, a simulation is provided where the suggested estimator is compared with the estimators for the precision matrix proposed in the literature. The optimal shrinkage estimator shows significant improvement and robustness even for non-normally distributed data.Comment: 26 pages, 5 figures. This version includes the case c>1 with the generalized inverse of the sample covariance matrix. The abstract was updated accordingl

    Bayesian Inference of the Multi-Period Optimal Portfolio for an Exponential Utility

    Full text link
    We consider the estimation of the multi-period optimal portfolio obtained by maximizing an exponential utility. Employing Jeffreys' non-informative prior and the conjugate informative prior, we derive stochastic representations for the optimal portfolio weights at each time point of portfolio reallocation. This provides a direct access not only to the posterior distribution of the portfolio weights but also to their point estimates together with uncertainties and their asymptotic distributions. Furthermore, we present the posterior predictive distribution for the investor's wealth at each time point of the investment period in terms of a stochastic representation for the future wealth realization. This in turn makes it possible to use quantile-based risk measures or to calculate the probability of default. We apply the suggested Bayesian approach to assess the uncertainty in the multi-period optimal portfolio by considering assets from the FTSE 100 in the weeks after the British referendum to leave the European Union. The behaviour of the novel portfolio estimation method in a precarious market situation is illustrated by calculating the predictive wealth, the risk associated with the holding portfolio, and the default probability in each period.Comment: 38 pages, 5 figure

    Estimation and inference for dependence in multivariate data

    Get PDF
    AbstractIn this paper, a new measure of dependence is proposed. Our approach is based on transforming univariate data to the space where the marginal distributions are normally distributed and then, using the inverse transformation to obtain the distribution function in the original space. The pseudo-maximum likelihood method and the two-stage maximum likelihood approach are used to estimate the unknown parameters. It is shown that the estimated parameters are asymptotical normally distributed in both cases. Inference procedures for testing the independence are also studied
    corecore